An introduction to

Neutron Scattering Monte Carlo Ray-Tracing Methods For Virtual Experiments

by E. Farhi, ILL/DS/CS

- 2. What for (in neutron scattering world)?
- 3. The *McStas* neutron ray-tracing package
- 4. A few examples...
- 5. Do it yourself: how to...

Origin of Monte Carlo methods

Used by Nature since ... (a long time): diversity of Life

First application using computers:

Metropolis, Ulam and Von Neumann at Los Alamos, 1943 Neutron Scattering and Absorption in *U* and *Pu*, Origin of *MCNP*

Name:

Monte Carlo Casino, a random generator (Ulam played poker)

Photograph Source: GALE FORCE Archive

What are Monte Carlo methods?

•Use random generators (play poker)

- Explore a complex and large phase space (many parameters)
- Integrates microscopic random events into measurable quantities **not** a usual regular sampling integration

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1, a < u_i < b}^{n} f(u_i) = \frac{1}{b-a} \int_{a}^{b} f(u) du$$

•Metropolis algorithm: model energy gap E as a probability

$$p \propto e^{-E/kT}$$

Integrals converge faster than *any* other method (for d > 3) when using *enough* independent events (central limit theorem)

F. James, Rep. Prog. Phys., Vol. 43 (1980) 1145.

When to use Monte Carlo methods

Dimensionality of phase space must be large (d > 5)

Overall complexity is beyond reasonable analytical methods

Each event can be computed easily and independently

MC is the 'lazy guy' method – think microscopic

Examples:

- •Molecular Dynamics
- spin-system phase transitions (Ising model)
- •nuclear reactions
- eray-tracing (light, particles)

Some Monte Carlo programs

Light ray-tracing: PoV-RAY and others ...

Nuclear reactor simulations (neutron transport): MCNP, Tripoli, GEANT4, FLUKA

Neutron Ray-Tracing propagation:

McStas

Neutrons are described as **(r, v, s, t)**, and are transported along models.

Each time physics takes place (scattering, absorption, ...) random choices are made. Propagation simply use Newton rules, *incl*. gravitation.

How to implement Monte Carlo methods?

Good random generator:

- •from thermal electronic noise (hardware)
- or quasi-random generators => quasi-Monte-Carlo

We shot *n* events, we encounter a probability 0 .

Crude Monte-Carlo (yes/no choice):

Keep only *np* events

Low statistics

Importance sampling (fuzzy choice – event weightening):

Keep *n* events

But associate a weight p to each of them

Retain statistical accuracy $(1/\sqrt{n})$

Why simulate neutron instruments+samples

- Design new instruments
- Optimize existing instruments (flux/resolution)
- Optimize usage of existing instruments (better experiments)
- •Get accustomed with the instruments before coming at the ILL
- •Measure the instrument effects on the simulated 'ideal' sample signal
- Estimate complex effects like:
 absorption, multiple scattering, geometry, resolution function...
- •Compare virtual experiments with real ones, possibly during exp.

Virtual experiments

Virtual experiments

Instrument simulation

 \otimes

Realistic Sample model

=

Neutron flight simulator

and then we play with it without breaking the instrument and sample

Presentation of McStas

Flexible, general simulation utility for neutron scattering experiments.

Original design for \underline{M} onte \underline{C} arlo \underline{S} imulation of \underline{t} riple \underline{a} x is \underline{s} pectrometers.

Developed at RISØ and ILL (started 1998).

Mainly funded by EU (FP 4-7): 2.5+1 people full time, plus projects.

Open source, GPL2. Works on all systems, binaries for *Linux*, *Win\$*, *MacOSX*

Most widely used code in its ecological niche (compared to other similar codes)..

Probably a few hundred users worldwide (200 registered) some contributors (community based).

Has been used to model most existing and future neutron scattering instruments.

<www.mcstas.org>

mcstas-users@mcstas.org mailing list mcstas-support@mcstas.org developer confact

A bit of theory for neutron-sample interaction

See Egelstaff or H. Fischer, Rev. Prog. Phys. 69 (2006) 233

Neutronist's Mantra

$$\frac{d^2\sigma}{d\Omega dE_f} = \frac{\sigma}{4\pi} \frac{k_f}{k_i} NS(q,\omega)$$

Holy Book (Squires)

Effective cross section for scattered intensity

$$\hat{\sigma} = \int \int \frac{d^2 \sigma}{d\Omega dE_f} d\Omega dE_f$$

V.F. Sears. Adv. Phys., 24, 1, 1975.

We like to play games in (q,ω) space

$$\frac{d\Omega}{d\theta} = -2\pi sin\theta$$

$$\frac{dq}{d\theta} = -\frac{k_i k_f sin\theta}{q}$$

Effective cross section in (q,ω) space

$$\hat{\sigma} = \sigma \iint \frac{S(q,\omega)q}{2k_i^2} dq d\omega$$

Probability to interact

$$p=e^{-\rho\,\hat{\sigma}\,x}$$

Scattering distribution

$$S(q,\omega)$$

with importance sampling to scatter preferably where *S* is large

Liquid Indium real and virtual experiment

Liquid Indium:

- Very low scattering cross section (good luck)
- Very high absorption (good luck)
- Never measured with neutrons (good luck)

Proposal includes both real and virtual experiment:

Simulation showed we would be able to measure the quasi-elastic line Around the first structure peak in S(q).

Experiment:

Levitation furnace (gas flow+laser) T=450 K

IN22 Ei=30.8 meV

Team: E. Farhi, P. Willendrup, L.P.Regnault, McStas <mcstas.org>

Liquid Indium real experiment

Data includes contribution from the furnace and the B4C nozzle. Sample is a ϕ =4mm diameter sphere

NEUTRIL iquid Indium: Ab-Initio Molecular Dynamics

We use VASP 200 atoms in a 17 Å cube Record atoms dynamics for 36 ps Compute $S(q,\omega)$ using nMoldyn

Coherent part

Incoherent part

We show here the measurement range Compared to experiment, computed $S(q,\omega)$ is very clean

Liquid Indium: Virtual experiment

We use *McStas* <mcstas.org> to model the reactor, the H25 supermirror Guide and the IN22 triple-axis spectrometer.

Model includes levitation furnace and nozzle.

We run on 80 cores for 4 hours to simulate all *q*-energy scans.

iquid Indium: Virtual experiment (cont'd)

Total signal shows a tail after the structure peak

Coherent part

Incoherent part

Furnace contribution

Virtual experiment enables to **prepare and understand** the measurement.

l-In measured with neutron

