

X-ray area detectors for synchrotron experiments Characteristics and Technologies

Cyril Ponchut ESRF Instrumentation Services and Development Division

Outline

□ Introduction

□ 2D detector parameters

□ 2D detector principles

□ 2D detector technologies

Introduction

The beamline user problem

X-ray area detector on a SR beamline

The beamline user problem

What is the optimum detector for a given (range of) experiment(s) ?

X-ray area detection on a SR beamline W detector sample $\Phi_{o}(t,E)$ S_i (x,y,t,E) V y U X-ray beam X

Detector parameters and characterization

2D detector parameters 2D detector model Gain Noise Dynamic range

Gain

Measuring G :

G =

G = image level (ADU) per <u>incident</u> X-ray

ADU : analog to digital units

integrated pixel signal in the exposed region

X-ray counts through pinhole measured with a counter

G includes X-ray interaction probability => **depends on energy**

Noise

Image noise : $N_o = \sqrt{Var(I(i, j))}$ $(i, j) \in ROI$ ADU/pixel r.m.s.

Dynamic range

 $DR_{bits} = \log_2 DR$ DR = 10000 = 80 dB = 13.2 bits

Not to be confused with ADC range = $\log_2 I_{max}$

Linearity

Integral non-linearity

$$INL = \frac{\max(|G(S_i) - \langle G \rangle|)}{\langle G \rangle}$$

2000

1900

2100

2200

2300

Quick non-linearity test

 10^{2}

1800

Quantum efficiency

QE = X-ray interaction probability = characteristic of the X-ray conversion medium

QE can be deduced from knowledge of detection material, but not measurable directly

QE does not take into account signal degradation across the system

 \Rightarrow Need for a general and measurable quantity for detection efficiency :

DQE

(Detective Quantum Efficiency)

Detective Quantum Efficiency (DQE)

 $DQE = SNR_{out}^{2}/SNR_{in}^{2} = (S_{o}^{2}/N_{o}^{2}) / (S_{i}^{2}/N_{i}^{2})$ (Gruner, 1978)

Measuring the DQE :

$$\left. \begin{array}{l} S_{o} / S_{i} = G \\ N_{i}^{2} = S_{i} \quad \text{(Poisson statistics)} \end{array} \right\} \quad DQE = \frac{G \cdot S_{0}}{N_{0}^{2}}$$

DQE approximated expression

Line-spread function (LSF)

For non-isotropic spatial response : PSF (point-spread function)

IEEE TNS <u>52</u> (2005)

Contrast Transfer Function (CTF)

$$CTF(v) = \frac{I_{\max}(v) - I_{\min}(v)}{I_{\max}(v) + I_{\min}(v)}$$

(square modulation)

Measuring the CTF :

Modulation Transfer Function (MTF)

 $MTF = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}} \quad \text{(sine modulation)}$

(sine modulation) Not measurable directly

Indirect measurement from LSF :

DQE in the Fourier domain

Frequency-dependent DQE

$$DQE(\nu) = \frac{G \cdot S_o \cdot MTF^2(\nu)}{N.NPS_o(\nu)}$$

Noise power spectrum

$$NPS(k,l) = \| FFT(I(i, j)) \|^{2}$$
angular
averaging

$$NPS(\nu) = \int_{0}^{2\pi} NPS(\nu, \theta) d\theta$$

Time resolution

Summary : basic area detector specification list

- Detection field, pixel size, LSF
- Gain, noise, dynamic range
- **Linearity**
- DQE at a given energy
- □ Frame rate, readout dead time, minimum exposure time
- Energy range

2D X-ray detection principles

Indirect conversion

X-ray converters Optical coupling

Direct conversion

Indirect conversion

X-ray to light converters

Absorption efficiencies

Absorption efficiency / spatial resolution trade-off

Decay times

Data from Thierry Martin (ESRF)

speed / dynamic range trade-off

Decay times

Phosphors with peak emission in the 530-550 nm range :

speed / sensitivity trade-off

Optical coupling

Fiberoptic taper

Direct coupling

Optical coupling efficiency

Magnification (G > 1) => coupling efficiency $\sim NA^2 \sim 1/N^2$

Demagnification (G < 1) => coupling efficiency $\sim 1/N^2G^2$

Field width / sensitivity trade-off

Signal propagation in indirect detection

Signal propagation in direct detection

LSF : indirect vs direct detection

2 different detectors with identical pixel sizes and X-ray absorptions :

Summary : indirect vs. direct detection

indirect

wide range of spatial resolutions

versatile

low gain at large input fields

dynamic range limitations

direct

sharp LSF

high gain (=> photon counting)

fixed spatial resolution

2D X-ray detector technologies

- Image sensors : CCD, CMOS
- Optically-coupled CCD detectors
- Photon-counting ASICS and detectors
- Flatpanels
- Image plates
- Gas filled multiwire proportional chambers

CCD image sensors MOS gate structure, 3-phase CCD +V₁ - $+V_2$ t, $+V_3$ poly-Si electrodes SiO₂ t2 $\dot{\Theta}$ pixel wells \⊕⊖⊖ t, p Si bulk t, Image credit : DALSA **Full frame transfer** exposure during readout => SMEARING V=q/C vertical shift output node output video signal horizontal shift

Electron-multiplication CCD

Self-amplification in horizontal shift register High gain

Excess noise at high gain

Dark noise amplification

CMOS image sensor

Example layout

Example characteristics (MICRON):

Active Array 1,280H x 1,024V Imaging Area 15.36mm(H) x 12.29mm(V) Pixel Size 12.0µm Dynamic Range 59dB Responsivity 1600 LSB/lux-sec 0-500+ fps Frame Rate Shutter type TrueSNAP Data Rate 660 Mp/s Master Clock 66 MHz 10-bit digital Data Format

CCD vs. CMOS in brief

CCD

High dynamic range

Low readout noise

readout time

smearing (full frame)

CMOS

High frame rate

Short exposures

Readout noise

Fixed pattern noise

Variable field CCD detector

Application : high-energy imaging (ESRF ID15)

Adjustable field size with zoom lens

Field size	7-19 mm
Pixel size	3.8-9.4 µm
Converter	YAG 280 μm
Gain	2.4 ADU/keV
LSF FWHM	13-25 µm
Frame rate	~10 Hz

Design : ESRF

CCD detector for EDXAS

Field size	$50 \text{x} 3 \text{ mm}^2$
Pixel size	25 µm
Noise	4 ADU/pixel rms
Dynamic range	14 bits
Frame rate	1 k Hz (kinetics mode)

Based on ESRF FReLoN CCD camera RSI 78 (2007)

Eiroforum school on Instrumentation - 16-20 May 2011

High-resolution CCD detector

Sensitive layer 1-25µm

Substrate 170µm

Submicron spatial resolution

Design : ESRF (Thierry Martin)

2D X-ray detector technologies

Large mosaic CCD

Field size Pixel size ADC range Noise Gain DQE LSF FWHM Frame rate 312 x 312 mm² 52 μm 16 bits 4 ADU/pixel r.m.s 2.1 ADU/10 keV X-ray 0.6 @ 10 keV 124 μm 0.26 Hz (1 s exposure)

Eiroforum school on Instrumentation - 16-20 May 2011

Large mosaic CCD : image corrections

raw image

Hybrid photon-counting pixel detectors

Example : Medipix2

http://medipix.web.cern.ch/MEDIPIX/

Each pixel is a photon counter

2D photon-counting : charge sharing

MAXIPIX

	256x256
Detection areas	512x512 pixel ²
	1280x256
Pixel size	55 μm ²
X-ray converter	Si 500 µm
Counter depth	13.5 bits
Frame rate	280-1400 Hz
Readout dead time	0.29 ms

23

28

20

32

38

Fast readout photon-counting detector

ESRF development Based on **MEDIPIX2** chip http://medipix.web.cern.ch/MEDIPIX/

Other photon-counting pixel detectors

PILATUS (DECTRIS)		487x195		
	Dete	ction areas	to	pixel ²
DECTAIS			2463x2	2527
DECTRIS		Pixel size		$172\mu m^2$
	X-ray	y converter	Si	300 µm
	Cor	unter depth		20 bits
		Frame rate	12	-200 Hz
	Readou	t dead time	2.7	7-3.6 ms
XPAD2 (CNRS CPPM) D	etection areas	120x75 mm ²	2	
· ·	Pixel size	330 µm ²		
X-	ray converter	Si 500 µm		
	Counter depth	15 bits		
Read	out dead time	2 ms		

Delpierre et al. NIMA 572 (2007) 250

Example application : SAXS

Photon-counting detector (Medipix2) Colloidal PMMA, 40% concentration, 8.33 keV

256

data : F. Zontone (ESRF)

Eiroforum school on Instrumentation - 16-20 May 2011

IEEE TNS 52(5) (2005) 1760

Eiroforum school on Instrumentation - 16-20 May 2011

Flatpanel + scintillator

Main application : high energy diffraction

Eiroforum school on Instrumentation - 16-20 May 2011

Flatpanel + semiconductor

marressearch	Main applicatio	n : diffraction
	Field size	358 x 430 mm ²
	Pixel size	139 μm ²
	X-ray converter	a-Se
	ADC range	16 (20) bits
	Noise	2.8 ADU/pixel r.m.s
	Gain	0.6 ADU/17.4 keV
	DQE	0.6 @ 17.4 keV
	LSF FWHM	~130µm
	Frame rate	0.3 Hz (1 s exposure)

Flatpanel + semiconductor

a-Se flatpanel pixel size 139 μm

CCD fiberoptic pixel size 100 µm

- Pixel-limited spatial resolution
- Large uniform detection area
- Image afterglow

Image plate scanner

Photostimulable luminescent screen

Eiroforum school on Instrumentation - 16-20 May 2011

ADC range

Readout time

Noise

Gain

Conclusion

This lecture only pretends to be :

An obviously incomplete overview of 2D X-ray detectors for synchrotrons experiments

- A guide to help asking oneself the right questions when having to choose or design a 2D X-ray detector
- A incentive to learn more about modern 2D X-ray detection technologies

Thank you for your attention