

neutrons: what for? and how?

Christian Vettier ESRF Grenoble, France ESS AB, Lund Sweden

1

experiments with neutron beams

- neutron properties
- neutron scattering applications
- neutron sources
- instruments and applications

A light for Science

the discovery of the neutron

James Chadwick 1932

Cavendish Laboratory, Cambridge

neutrons: no charge, mass close to proton – 1.675 10⁻²³ kg spin 1/2 - magnetic moment 1.93 μ_N

free neutrons are unstable β -decay proton, electron, anti-neutrino life-time 886±1 sec

neutrons as particles

A light for Science

neutron : an object to be studied fundamental interactions

confirmation of quantum effects in presence of gravity field

new developments

resonance spectrometry

European Synchrotron Radiation Facility Christian Vettier 'the use of neutron beams'

A light for Science

what do neutrons 'feel' or 'interact' with?

like a billiards ball and a small compass

single nucleus process

neutron-nuclei interaction Fermi length $b \approx 10^{-12}$ cm

A light for Science

Fermi length $b \approx 10^{-12}$ cm

European Synchrotron Radiation Facility Christian Vettier 'the use of neutron beams'

A light for Science

neutron-magnetic moments interactions

magnetic structures spin dynamics magnetic interactions

"magnetic" electron densities

coherent and incoherent scattering

 $\frac{d\sigma}{d\Omega} = \left| \sum_{j} b_{j} \exp(i\mathbf{Q} \cdot \mathbf{r}_{j}) \right|^{2} \quad \text{different sites, no correlation}$ $\frac{d\sigma}{d\Omega} = \sum_{j,j'} \langle b \rangle^{2} \exp[i\mathbf{Q} \cdot (\mathbf{r}_{j} - \mathbf{r}_{j'})] + \sum_{j} (\langle b^{2} \rangle - \langle b \rangle^{2}) \quad \text{same site}$ $\sigma_{\text{coh}} = 4\pi \langle b \rangle^{2} = 4\pi b_{\text{coh}}^{2} \quad \sigma_{\text{incoh}} = 4\pi (\langle b^{2} \rangle - \langle b \rangle^{2}) \quad \stackrel{(a)}{=} \int_{b_{j}} \left[\frac{1}{2} \sum_{j=1}^{a} \frac{$

$$\left\langle \mathbf{b}_{j}\mathbf{b}_{j'}\right\rangle = \left\langle \mathbf{b}_{j}\right\rangle \left\langle \mathbf{b}_{j'}\right\rangle = \left\langle \mathbf{b}\right\rangle^{2}$$
$$\left\langle \mathbf{b}_{j}\mathbf{b}_{j'}\right\rangle = \left\langle \mathbf{b}_{j}^{2}\right\rangle = \left\langle \mathbf{b}^{2}\right\rangle$$

isotopic dependence

nuclear spin dependence, I

$$\sigma_{coh} = 4\pi \left(\omega_{+}b_{+} + \omega_{-}b_{-}\right)^{2}$$

$$\sigma_{incoh} = 4\pi \omega_{+} \omega_{-} \left(b_{+} - b_{-}\right)^{2} \quad \omega_{+} = \frac{I+1}{2I+1} \quad \omega_{-} = \frac{I}{2I+1}$$

what do we observe/measure with neutrons ?

isotope labelling (deuteration)

neutron-nuclei interactions Fermi length $b \approx 10^{-12}$ cm

some b's are < 0 ... phase shift ... isotopic sensitivity

incoherent scattering

A light for Science

contrast variation

objects in solution

different average cross-sections

100 % H₂O

• 100 % D₂O

- null or full contrast : external shapes
- intermediate contrast : details

╋

A light for Science

sensitivity and selectivity isotopic substitution/contrast variation

A light for Science

neutron sources

how to produce neutrons?

free neutrons are created through 'escape' from nuclei

neutron stars

neutrons from fission process neutrons from spallation process neutrons from fusion process

neutron sources - nuclear reactors

A Light for Science

a neutron source how does it work? fission reactor slow neutrons splitting nuclei

ILL reactor D₂O moderator hot source: graphite block 2400K cold sources: liquid hydrogen 25K thermal flux 1.5 10¹⁵ n/cm²/sec high power density (10 MW/litre) / achievable rate of cooling reactor core

European Sunchrotron Radiation Facility Christian Vettier 'the use of neutron beams'

pulsed reactors

time-of-flight methods on pulsed sources

pulsing reactivity to become supercritical

- mechanically (fissile materials or reflector)
- electron pulses in the core photo-fission process
- combination of the two above.

IBR-2 at Dubna, Russia average power 2 MW peak power 1,500 MW rep rate 5 Hz, pulse width 215 µsec peak flux 1.5 10¹⁶ n/cm²/sec

pulsed sources

to overcome cooling problems

series of installations at Argonne Nat Lab, Rutherford, KEK

photo-fission

- using high-energy electrons on heavy metal targets deceleration leads to Bremsstrahlung
- γ-rays produce fast neutrons
 - not efficient 3,000MeV per neutron intense γ-ray beams

spallation sources

using high-energy electrons on heavy metal targets

'evaporation' of 30 fast neutrons

accelerator proton 2.0 GeV high Z metal target

A light for Science

ISIS facility Rutherford Laboratory H⁻ ion source Linac 70 Mev proton synchrotron 800 MeV repetition rate 50 Hz pulse width 100 ns power 0.200 MW

2 target stations different moderators

neutron pulses width ~ 10-90 μ s

A light for Science

protons pulses 0.3ns 50.6MHz

PSI

equivalent to 0.7MW

continuous neutron source but pulsed accelerator

1 MW short pulses

JPARC

0.8 MW 60Hz short pulses

in 2012?

neutron moderators

fission/spallation neutrons are in the MeV range moderation process thermal equilibrium with moderator

Maxwellian spectrum if thermal equilibrium

$$k_{\rm m} = \frac{h}{(5m_{\rm n}k_{\rm B}T)^{1/2}} = \frac{19.483}{(T)^{1/2}} ({\rm A})^{1/2}$$

choice of moderator depends on applications hot neutrons <0.6 Å thermal neutrons 1- 4 Å cold neutrons 4-20 Å

neutron sources

sources, now and in the future

European Synchrotron Radiation Facility C. Vettier ESSS 8th PSI Summer School - Zuoz

1-7 August 2009

23

neutron transport

A light for Science

neutron optics

A light for Science

low brightness sources $\sim 10^{14}$ n/cm²/steradian/sec compared with a 60 W (900 lm) light bulb $\sim 10^{19}$ photons/cm²/steradian/sec

optimise neutron economy

- to collect (thermal/cold) neutrons
- to transport them to instruments

neutron monochromators

A light for Science

crystal monochromators

selection of wavelength bandwidth (energy)

focusing

focusing mechanics

Copper 200

Heusler alloy: polarising monochromator

focusing supermirrors / guides

neutron velocity selectors

principle for time-of-flight

create pulse structure (even on reactors)

separate energies through velocity

select energies via time slicing

disk chopper

opening of ~ 1 degree rotational speed 300Hz opening of about 80 µsec disk diameter of 700 cm (speed about 600m/s)

Neutrons

Fermi chopper rotational speed 600Hz opening of about 1 µsec

helical velocity selector typical bandwidth 10% SANS experiments

neutron polarisation

A light for Science

production of polarised beams

Bragg reflection from magnetised crystal $\frac{d\sigma}{d\Omega} = F_{N}^{2}(\mathbf{Q}) + 2(\mathbf{P} \cdot \boldsymbol{\mu})|F_{N}(\mathbf{Q})||F_{M}(\mathbf{Q})| + F_{M}^{2}(\mathbf{Q})$

B is guide field and polarising field

up-state $\frac{d\sigma}{d\Omega} = |F_N(\mathbf{Q}) + F_M(\mathbf{Q})|^2$ $\frac{d\sigma}{d\Omega} = |F_N(\mathbf{Q}) - F_M(\mathbf{Q})|^2$ down-state good matching for Cu₂MnAI (111), Co_{0.92}Fe_{0.08} (200), ⁵⁷Fe (110)

total reflection from magnetised mirror

$$n' = 1 - \frac{N\lambda^{2}(b \pm p)}{2\pi}$$
$$\theta_{c} \approx \lambda \left[\frac{N}{\pi}(\overline{b} \pm p)\right]^{1/2}$$

neutron polarisation

production of polarised beams

transmission through polarising filter

neutron absorption cross section of ³He is highly spin-dependent

 $\sigma_{\uparrow\uparrow} \approx 0$ parallel neutron spins are transmitted $\sigma_{\uparrow\downarrow} \approx 6000 \, \text{barns}$ anti-parallel neutron spins are absorbed

nuclear spin-polarised ³He gas

the neutron is a weak probe! difficult to detect

thermal neutrons produce negligible ionisation

secondary ionisation due to neutron capture

emission of gamma rays or charged nuclei

most common absorbers: ³He, ¹⁰B and ⁶Li

image plates

common in SRX community

need to convert neutron into photons (⁶Li or Gd)

neutron detection

A light for Science

gas detectors as codision an ³He gas difficult to obtain nowadays ¹⁰B in BF₃ toxic gas To charge sensitive High-lo amplifier 1 position sensitive Detector array detectors detector bank Neutron Incident To charge sensitive amplifier 2

multi-wire counter

......

micro-pattern gas counter photolithography

beam

Sample

A light for Science

powder diffraction

powder diffraction

A Light for Science

molecular crystal CH₃OH.H₂O methanol monohydrate negative linear compressibility negative thermal expansion

applications to nano-switches but also planetary sciences ...

A D Fortes et al. Science 2011;331:742-746

 \times

A Light for Science

single crystal diffraction polarised neutrons

organic materials molecular magnets 'high' T_c magnetic couplings driven by radicals packing

European Synchrotron Radiation Facility Christian Vettier 'the use of neutron beams'

diffraction - disordered materials

Sandals ISIS

long range order observed in glasses (chemical and topological)

D4 ILL

diffraction and imaging engineering

residual stresses in large mechanical parts welds,

SALSA instrument ILL

neutron imaging of large objects

fossil with leaves

BMW engine

200 µsec exposures

FRM-2 PSI ILL

18 May 2011

localisation and displacements of protons A.Y. Kovalevsky et a., Structure 18, 688 (2010)

European Synchrotron Radiation Facility Christian Vettier 'the use of neutron beams'

instruments D11 small angle neutron scattering ILL Velocity selector (Monochromator) Neutron guides (Collimators) Sample Detector (position sensitive) Neutron guides (Collimators) Evacuated tube (40m) Diaphragms Low-angle area detector Incident beam monitor Frame overlap mirrors High-angle detector bank Sample 4 m Aperture selector Wavelengthselecting chopper Neutrons 11 m LOQ Supermirror bender ISIS

'soft matter' systems

unified scheme of order and mutual orientation under 'orientation' fields: flow, shear,

S. Förster et al. Nature Materials 6, 888 (2007)

instruments

neutron reflectometry

